Performance of the AES Candidate Algorithms in Java

Andreas Sterbenz, Andreas.Sterbenz@iaik.at
Peter Lipp, Peter.Lipp@iaik.at
Institute for Applied Information Processing and Communications
Graz, University of Technology
Inffeldgasse 16, A-8010 Graz, Austria

http://www.iaik.at]

Abstract

We analyze the five remaining AES candidate al-
gorithms MARS, RC6, Rijndael, Serpent, and Twofish
as well as DES, Triple DES, and IDEA by examining
independently developed Java implementations. We
give performance measurement results on several
platforms, list the memory requirements, and present
a subjective estimate for the implementation difficulty
of the algorithms. Our results indicate that all AES
ciphers offer reasonable performance in Java, the
fastest algorithm being about twice as fast as the
slowest.

1. Introduction

The performance of the AES candidates has been
the subject of significant discussion, both in the
authors' specifications as well as by other parties.
Most of this discussion was focused on C and assem-
bler implementations. Some attention has been given
to Java implementations but the results were not fully
conclusive. This was mostly caused by the fact that
the authors' reference Java implementations were
evaluated which vary significantly in their coding
assumptions and in the degree to which they were
subject to optimizations. We intend to fill this gap by
evaluating independently developed, consistent Java
implementations and comparing the AES candidates'
performance to ciphers currently in use.

2. Implementation Notes

The code was developed at the IAIK by Andreas
Sterbenz. The AES core code is available under a free
license including source at or with a JCE 1.2
compatible API as part of the IAIK JCE library. Ser-
pent S-Box expressions and Rijndael and Twofish
setup code are based on C code developed by Dr.
Brian Gladman

The design paradigm used is derived from the Java
Cryptography Extension (JCE) defined by Javasoft
and modified for use within the IAIK JCE library: for
each cipher stream a Java object is created which is
then initialized with a certain key in either encryption

or decryption mode. Then the data to be encrypted is
passed to the encrypt (decrypt) method one 128 bit
block at a time. Buffering, block chaining, and pad-
ding are all performed on a higher level and do not
influence the design of the core code. Therefore, for
each AES cipher only three methods need to be pro-
vided: key setup, encryption, and decryption.

The algorithms have been subject to significant
optimization work. The primary focus for the optimi-
zation was to maximize encryption and decryption
throughput. Secondary and tertiary goals were key
setup speed and memory usage, respectively.

3. Java

The Java programming language has become fairly
popular in recent years. This is partly due to the fact
that Java programs are platform (i.e. processor and
operating system) independent in both source and
binary form. This is possible by employing a compi-
lation model different from that in most other lan-
guages. Instead of compiling source code into ma-
chine code for one particular processor family, the
compiler produces machine code (called "bytecode™)
for an imaginary Java Virtual Machine (JVM). At
runtime this bytecode is then translated into machine
code by a JVM implementation for the particular
platform.

This extra step has influences on the programming
process when optimizing code. It takes you one step
farther away from the hardware making some typical
optimization tricks impossible, like for example di-
rectly using the processor rotation instruction. An-
other problem is that a sizable portion of the compi-
lation is delayed until runtime and performed by the
JVM. As they are not designed for optimizations this
has the effect that those optimizations are not made.

Of course there are several options for the transla-
tion of bytecode to machine code. The simplest and
most obvious is to use an interpreter: take one JVM
instruction at a time and execute the corresponding
machine code instruction(s). Much better perform-
ance is offered by so-called Just-In-Time (JIT) com-
pilers. They take an entire method and translate it to
machine code prior to its first execution, subsequently

http://www.iaik.at/

the generated machine code is executed. JITs are now
the common JVM type on most platforms and offer
an approximately ten times performance improve-
ment over interpreters. As a third type of JVMs there
are hybrid variants aimed at reducing the initial delay
caused when the JIT compilers translate a large num-
ber of methods at program startup, but this is not
relevant for our application.

3.1. Java in Cryptographic Applications

Today the opinion that Java is not the language to
be used for cryptographic applications still seems to
be popular. Obviously we do not agree. While Java is
of course slower than C the difference is typically less
than a factor of two, heavily optimized C code ex-
cluded, as demonstrated by the results presented in
this paper. Although this difference is of course sig-
nificant Java on today's hardware is faster than C on
two year old hardware. The point being that while
Java will hardly be the language of choice for high
load servers it may well be the choice for medium
load servers and especially clients. Add to that hand-
held and other small devices and performance in Java
becomes an issue.

One particular advantage of Java is that there is a
well established standard cryptographic API, the JCA
and JCE architecture from Javasoft. The success of
cryptography libraries in Java including the libraries
from the IAIK confirms this position.

4. Evaluation Parameters

The algorithms were implemented in Java. Those
implementations were evaluated with respect to three
criteria: execution speed, memory usage, and imple-
mentation difficulty.

4.1. Execution Speed

For symmetric ciphers there are three components
that make up the time required to encrypt some data:
static initialization time, key setup time, and data
encryption time.

Static initialization is used to perform certain
preparation steps, generate constant tables, etc. Be-
cause it takes very little time and is largely dependent
on the code size vs. speed tradeoff chosen in the im-
plementation it was not measured.

Key setup is used to initialize a cipher for a certain
key, i.e. perform round key generation, etc. It is per-
formed once per encryption stream. It may be de-
pendent on whether encryption or decryption mode is
chosen and on the key length. For the ciphers ana-
lyzed only Rijndael and IDEA have different key
setup times for encryption and decryption modes and

only Rijndael and Twofish significantly different
setup times for different key lengths.

Data encryption time is of course the time it takes
to encrypt data bits once the cipher has been properly
initialized. The AES candidates are 128 bit block
ciphers, that means one encryption operation is per-
formed every 16 data bytes. Again it may vary with
the cipher's mode and key length. For all ciphers
analyzed the encryption and decryption times are
virtually identical and only Rijndael's performance is
dependent on the key length.

4.1.1. Key Setup Speed Measurement

Key setup speed was determined as described by
the following pseudo code:

Repeat 128 tines
CGenerate 32 random keys
Start timer
For each key
Repeat 1024 tines
Initialize cipher with key
Stop tiner

To obtain the final value the average of all meas-
urements within three standard deviations was calcu-
lated.

4.1.2. Encryption Speed Measurement
Similarly encryption speed was measured:

Repeat 128 tines
Cenerate a random key
Initialize cipher with key
Start tinmer
Repeat 2048 tines
Encrypt a 1024 byte array
Stop tiner

The same method as above was used to obtain the
final value. Note that the same 1024 byte array is
encrypted each time which takes full advantage of the
CPU caches. In other words, the results presented
here are upper boundaries for real world performance.

4.1.3. Environment

The code was compiled using Symantec Visual
Cafe 2.5a with optimizations enabled. The results
were obtained by running the tests on a machine with
an Intel Pentium Pro 200 MHz CPU and 128 MB
RAM running Windows NT 4.0 with Service Pack 4.
Performance wise this is virtually identical to the
NIST reference platform (64 MB RAM and running
Windows 95).

However, it should be noted that the actual devel-
opment and optimization was done on a machine
using an AMD K&6-2 processor. The optimizing proc-
ess, which includes trial and error strategies was per-
formed to maximize throughput on this machine and
not the reference machine. This may in some cases

DES |[Triple DES |IDEA [MARS [RC6 [Rijndael |Serpent [Twofish
Class File Size n/a n/a n/a 9984 1931 (4900 12483 5204
Per process memory |5120 |5120 0 3220 0 20520 0 6816
Per instance memory | 128 |384 416 220 432 | 240 576 4400

Table 1: Class file size and

lead to cases were the performance on the reference
machine is not as good as it could be.

4.2. Memory Usage

We give an estimate of the memory required for
each of the algorithms. The size of the class file (de-
bugging information removed) is listed to give an
idea of the total size, consisting of code size and data
like S-Box tables, etc. This is only done for the AES
candidates because the other algorithms use a slightly
different APl which would skew results.

Probably more interesting is the amount of mem-
ory required during execution. We list the data mem-
ory used obtained by counting the variables used in
the source code. Overhead for arrays or data allocated
on the stack is not counted as it is fairly small and
approximately identical for all of the algorithms.

4.3. Implementation Difficulty

We also assign implementation difficulty "grades"
to the algorithms. In difference to the other criteria
these were not measured but are subjective estimates
for the time it required to arrive at an acceptably fast
implementation of the algorithm. If we want to look
at it in a quasi formal way we identify the following
factors:

e Time taken to understand the algorithm (at
least well enough to be able to implement it).

» Time taken to understand how to efficiently
implement the algorithm on a 32 bit platform.
As some algorithms need to be coded very dif-
ferently from their specification in order to be
efficient this part may constitute a significant
part of the total time.

e Time taken to actually code the implementa-
tion.

The first two points are of course to some degree
dependent on the documentation provided by the
algorithm designers and other parties. Therefore, new
or improved documentation may update the results
given here.

memory usage in bytes.

5. Algorithms

5.1. DES

The Data Encryption Standard (DES) is the current
US standard which the AES will eventually replace. It
dates back from the 1970s and has become inadequate
in particular because of its key length of only 56 bit.
DES was designed for hardware implementations and
requires tricks to operate moderately fast in 32 bit
software implementations. These tricks are not obvi-
ous which is why DES only earns a B- for imple-
mentation difficulty. However, an advantage of DES
over all other algorithms examined except Triple DES
is that the encrypt and decrypt operations are identical
save for the key schedule resulting in smaller code.

30000

25000

20000 —

15000 — — H

10000 1 — — H

Encryption Speed (kbit/s)

5000 - — — H

S % & & & & &S
& 09\\, \o“’\?\N W < AP
«'\\Q\
5.2. Triple DES

Triple DES overcomes the limitation of the short
DES key length by using three DES cores with sepa-
rate keys in sequence. This results in an effective
strength of 112 bit (meet in the middle attacks) at the
price a significant performance drop. Triple DES only
performs somewhat faster than one third of the speed
of DES (reduced overhead, leaving off the initial and
final permutations), which means it is very slow in
software. Implementation difficulty is B- as with
DES.

5.3. IDEA

IDEA is a 16 bit oriented cipher which uses multi-
plication modulo 65537 for fast diffusion. Conse-
quently it performs quite well compared to DES (de-
pending on the processors multiplication unit). How-
ever, its key setup is quite slow in decryption mode as
multiplicative inverses have to be calculated. It has
also to be noted that a class of weak keys has been
discovered. For implementation difficulty it earns B+
as that is fairly straight forward.

5.4. MARS

MARS is the first of the AES candidates we ex-
amine. It uses 8 rounds of unkeyed mixing before and
after the core encryption rounds. One of its advan-
tages is that a 32 bit implementation can be written
exactly the way the algorithm is specified, also aided
by the pseudo code given in the specification. Imple-
mentation difficulty B+.

5.5. RC6

RC6 is a cipher that evolved from RC5. It is very
simple to understand and implement and very fast on
32 bit processors; implementation difficulty A. Al-
though the least time was spent on optimizing RC6 it
still comes out as the fastest algorithm on almost all
platforms.

5.6. Rijndael

Rijndael was designed based on strong mathemati-
cal foundations. Implemented on 32 bit processors
only table lookup, XOR and shift operations are used.
The number of rounds in the Rijndael cipher increases
with the key length resulting in decreasing speed for
both key setup and encryption. Key setup for Rijndael
is very fast for in encryption mode but slower in de-
cryption mode as an additional inversion step is re-
quired. Implementation difficulty B.

5.7. Serpent

Serpent was designed for so-called bitslice imple-
mentations. The idea is to view a 32 bit register as 32
one bit registers which are operated on by 32 one bit
SIMD processors with e.g. logical operations. How-
ever, S-Boxes have to be implemented via logical
expressions in this mode. Efficient expressions are
not trivial to obtain and no expressions are given in
the specification, contributing to the B- grade for
implementation difficulty. Serpent was designed with
a large safety margin of 32 rounds vs. about 20 mini-
mum secure rounds. This results in lower speed, the

120000

100000

80000

60000

40000

Key Setup Speed (keys/s)

20000 -

o & ¢ 2 o & & Q&
£ g o F FEE
& S \\/'1/ \,\/w b"’z b’f’@ NS

@ Yo &S
«g& \0‘(’/ \QQ/ S S

penalty depending on the JVM implementation and
the processor.

5.8. Twofish

Twofish is a very flexible cipher that allows for
several implementation options allowing a memory
usage vs. key setup speed vs. encryption speed trade-
off. As maximum encryption throughput was desired
the "full keying" option was chosen for the imple-
mentation. A special property of Twofish is that key
dependent S-Boxes are used. This somewhat hurts
performance on certain JVMs, in particular when
using the Symantec JIT compiler that comes with the
JDK on the Windows platform and which was used
for the measurements. This means that Twofish may
be somewhat faster compared to the other algorithms
on other platforms. As Twofish is a quite complicated
cipher it earns B- for implementation difficulty.

6. Conclusions

We have analyzed the performance of the AES
candidate and other ciphers.

The results for encryption and decryption speed
show that RC6 is about 25% faster than the other
algorithms. Then MARS, Rijndael, and Twofish fol-
low with virtually identical performance for 128 bit
keys, Rijndael being slower for longer keys. Serpent
is trailing behind but is still about as fast as IDEA.
DES follows with Triple DES far behind. These re-
sults are similar to some tests made using C imple-
mentations but deviate much from Java studies. The
results also show that Java is no more than a factor of
2-3 slower than optimized C code.

The key setup performance is more varied with the
fastest AES candidate more than 7 times as fast as the
slowest. This appears to be partly due to differing
opinions about the purpose of the key schedule. It
could be viewed as a one way hash function: accept-
ing an arbitrarily long key, producing output of fixed
length (the round keys). All round keys depend on all
input bits and obtaining a round key (using some

attack) does not yield any information about the
original key. Some algorithms try to approximate this
ideal while others only generate the necessary key
material in a straight forward way.

In any case Rijndael is the fastest algorithm with
respect to key setup, although it is not that far ahead
when keys longer than 128 bit are used and in de-
cryption mode. Twofish has a fairly slow key setup
using this implementation option.

In summary it can be said that if properly imple-
mented all algorithm offer reasonable performance in
Java. The results are mostly in line with those ob-
tained by studies evaluating C implementations.

7. References

[1]1AIK. The IAIK AES home page
ttp://jcewww.iaik.at/aes/|

[2]Brian Gladman. AES Implementations in C

http://www.btinternet.com/~brian.gladman/cryptograph

technology/aes2/aes.r2.algs.zi

[3] X. Lai, J.L. Massey and S. Murphy. Markov ciphers and
differential cryptanalysis Advances in Cryptology, Pro-
ceedings Eurocrypt'91, LNCS 547, D.W. Davies, Ed.,
Springer-Verlag, 1991, pp. 17-38.

[4]Jim Dray. Report on the NIST Java AES Candidate
Algorithm Analysis Available from
[ttp://csre.nist.gov/encryption/aes/round2/round2.htm|

[5] Lawrence E. Bassham Ill. Efficiency Testing of ANSI C
Implementations of Roundl Candidate Algorithms for
the Advanced Encryption Standard
http://csrc.nist.gov/encryption/aes/round2/round2.htm|

Appendix

This appendix includes the full performance figures as obtained on the reference machine.

(6]

Encryption DES | Triple DES | IDEA | MARS | RC6 | Rijndael | Serpent | Twofish

Speed (56 bit) (168 bit)

(kbit/s)
128 bit key |[10508 4178 12820 (19718 |26212 |19321 11464 19265
192 bit key |[n/a n/a n/a 19760 |26192 |16922 11474 19296
256 bit key [n/a n/a n/a 19737 | 26209 |14957 11471 19275
Decryption DES | Triple DES | IDEA | MARS | RC6 | Rijndael | Serpent | Twofish

Speed (56 bit) (168 bit)

(kbit/s)
128 bit key [10519 4173 13018 (19443 |24338 |18868 11519 18841
192 bit key |[n/a n/a n/a 19670 |24382 |16484 11514 18841
256 bit key [n/a n/a n/a 19489 | 24279 |14468 11533 18806
Encryption DES | Triple DES | IDEA | MARS | RC6 | Rijndael | Serpent | Twofish
Key Setup | (56 bit) (168 bit)

(keys/s)
128 bit key |[18128 5150 90571 |28680 |45603 |96234 34729 13469
192 bit key |[n/a n/a n/a 27928 | 40625 |86773 33516 10556
256 bit key [n/a n/a n/a 26683 | 29069 | 70494 31973 8500
Decryption DES | Triple DES | IDEA | MARS | RC6 | Rijndael | Serpent | Twofish
Key Setup | (56 bit) (168 bit)

(keys/s)
128 bit key |[18039 5136 20737 (28743 |45709 |56017 34687 13469
192 bit key |[n/a n/a n/a 27917 | 40625 |48324 33560 10550
256 bit key [n/a n/a n/a 26731 39028 |39963 31973 8531

http://jcewww.iaik.at/aes/
http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/aes.r2.algs.zip
http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/aes.r2.algs.zip
http://csrc.nist.gov/encryption/aes/round2/round2.htm
http://csrc.nist.gov/encryption/aes/round2/round2.htm

	Introduction
	Implementation Notes
	Java
	Java in Cryptographic Applications

	Evaluation Parameters
	Execution Speed
	Key Setup Speed Measurement
	Encryption Speed Measurement
	Environment

	Memory Usage
	Implementation Difficulty

	Algorithms
	DES
	Triple DES
	IDEA
	MARS
	RC6
	Rijndael
	Serpent
	Twofish

	Conclusions
	References
	Appendix

